Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Phase Shift' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Phase Shift' found in 1 term [] and 18 definitions [], (+ 9 Boolean[] results
previous     11 - 15 (of 28)     next
Result Pages : [1]  [2 3 4]  [5 6]
MRI Resources 
Spectroscopy pool - Implant and Prosthesis pool - Guidance - Portals - Universities - Libraries
 
Flow Effects
 
Motion of material being imaged, particularly flowing blood, can result in many possible effects in the images.
Fast moving blood produces flow voids, blood flowing in to the outer slices of an imaging volume produces high signals (flow related enhancement, entry slice phenomenon), pulsatile flow creates ghost images of the vessel extending across the image in the phase encoding direction (image misregistration).
Flow-related dephasing occurring when spin isochromats are moving with different velocities in an external gradient field G so that they acquire different phases. When these phases vary by more then 180° within a voxel, substantial spin dephasing results leading to considerable intravascular signal loss.
These effects can be understood as caused by time of flight effects (washout or washin due to motion of nuclei between two consecutive spatially selective RF excitations, repeated in times on the order of, or shorter than the relaxation times of blood) or phase shifts (delay between phase encoding and frequency encoding) that can be acquired by excited spins moving along magnetic field gradients.
The inconsistency of the signal resulting from pulsatile flow can lead to artifacts in the image. The flow effects can also be exploited for MR angiography or flow measurements.

See also Flow Artifact.
 
Images, Movies, Sliders:
 Anatomic MRI of the Knee 1  Open this link in a new window
    
SlidersSliders Overview

 Anatomic MRI of the Neck  Open this link in a new window
    
SlidersSliders Overview

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 
spacer
 
Further Reading:
  News & More:
Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device
Thursday, 31 December 2009   by 7thspace.com    
MRI measure of blood flow over atherosclerotic plaque may detect dangerous plaque
Friday, 5 April 2013   by www.sciencecodex.com    
Searchterm 'Phase Shift' was also found in the following service: 
spacer
Ultrasound  (3) Open this link in a new window
Flow QuantificationInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Quantification relies on inflow effects or on spin phase effects and therefore on quantifying the phase shifts of moving tissues relative to stationary tissues.
With properly designed pulse sequences (see phase contrast sequence) the pixel by pixel phase represents a map of the velocities measured in the imaging plane. Spin phase effect-based flow quantification schemes use pulse sequences specifically designed so that the phase angle in a pixel obtained upon measuring the signal is proportional to the velocity. As the relation of the phase angle to the velocity is defined by the gradient amplitudes and the gradient switch-on times, which are known, velocity can be determined quantitatively on a pixel-by-pixel basis. Once, this velocity is known, the flow in a vessel can be determined by multiplying the pixel area with the pixel velocity. Summing this quantity for all pixels inside a vessel results in a flow volume, which is measured, e.g. in ml/sec.
Flow related enhancement-based flow quantification techniques (entry phenomena) work because spins in a section perpendicular to the vessel of interest are labeled with some radio frequency RF pulse. Positional readout of the tagged spins some time T later will show the distance D they have traveled.
For constant flow, the velocity v is obtained by dividing the distance D by the time T : v = D/T. Variations of this basic principle have been proposed to measure flow, but the standard methods to measure velocity and flow use the spin phase effect.
Cardiac MRI sequences are used to encode images with velocity information. These pulse sequences permit quantification of flow-related physiologic data, such as blood flow in the aorta or pulmonary arteries and the peak velocity across stenotic valves.
spacer

• View the DATABASE results for 'Flow Quantification' (6).Open this link in a new window

MRI Resources 
Pacemaker - Spectroscopy - Breast Implant - Software - Corporations - MRI Physics
 
Gradient EchoForum -
related threads
 
(GE) An echo signal generated from a free induction decay by means of a bipolar switched magnetic gradient. The echo is produced by reversing the direction of a magnetic field gradient or by applying balanced pulses of magnetic field gradient before and after a refocusing RF pulse so as to cancel out the position dependent phase shifts that have accumulated due to the gradient.
In the latter case, the gradient echo is generally adjusted to be coincident with the RF spin echo. When the RF and gradient echoes are not coincident, the time of the gradient echo is denoted echo time (TE) and the difference in time between the echoes is denoted time difference (TD).
Gradient echo does not refocus the effects of main field inhomogeneity and therefore is generally used with a short echo time. Disadvantages of gradient echo imaging are compromised anatomic details and artifacts in regions with varying susceptibility e.g. between the air-containing sinuses and brain and especially between haemorrhages and normal tissue.

See also Susceptibility Artifact.
spacer

• View the DATABASE results for 'Gradient Echo' (121).Open this link in a new window

 
Further Reading:
  Basics:
Mapping of low flip angles in magnetic resonance(.pdf)
Saturday, 1 January 2011   by www.hal.inserm.fr    
A LANTHANIDE LANTHOLOGY(.pdf)
   by www.phy.davidson.edu    
Enhanced Fast GRadient Echo 3-Dimensional (efgre3D) or THRIVE
   by www.mri.tju.edu    
MRI Resources 
Coils - Brain MRI - Hospitals - Used and Refurbished MRI Equipment - Case Studies - Mobile MRI Rental
 
Gradient Moment Nulling
 
Gradient moment nulling used as motion artifact suppression technique (MAST) reduces constant velocity motion distortion in standard spin echo or gradient echo pulse sequences. It is an adjustment to zero at the echo time (TE) of the net moments of the amplitude of the waveform of the magnetic field gradients with time. The zeroth moment is the area under the curve. The first moment is the 'center of gravity' etc.
The aim is to minimize the phase shifts acquired by the transverse magnetization of excited nuclei moving along the gradients (including the effect of refocusing radio frequency pulses), particularly for the reduction of image artifacts due to motion.
spacer

• View the DATABASE results for 'Gradient Moment Nulling' (7).Open this link in a new window

 
Further Reading:
  Basics:
Motion Compensation in MR Imaging
   by ccn.ucla.edu    
Searchterm 'Phase Shift' was also found in the following service: 
spacer
Ultrasound  (3) Open this link in a new window
Gradient Motion Rephasing
 
(GMR) The application of strategic gradient pulses can compensate the objectionable spin phase effects of flow motion. That means the reducing of flow effects, e.g. gradient moment nulling of the first order of flow. The simplest velocity-compensated pulse sequence is the symmetrical second echo of a spin echo pulse sequence.
Gradient field changes can be configured in such a way that during an echo the magnetization signal vectors for all pixels have zero phase angle independent of velocities, accelerations etc. of the measured tissue. E.g. the adjustment to zero at the time TE of the net moments of the amplitude of the waveform of the magnetic field gradients with time. The zeroth moment is the area under the curve, the first moment is the 'center of gravity' etc. The aim is to minimize the phase shifts acquired by the transverse magnetization of excited nuclei moving along the gradients (including the effect of refocusing RF pulses), particularly for the reduction of image artifacts due to motion.
Also called Flow Compensation (FC), Motion Artifact Suppression Technique (MAST), Flow motion compression (STILL), Gradient Rephasing (GR), Shimadzu Motion Artifact Reduction Technique (SMART).
spacer

• View the DATABASE results for 'Gradient Motion Rephasing' (2).Open this link in a new window

 
Further Reading:
  Basics:
Motion Compensation in MR Imaging
   by ccn.ucla.edu    
MRI Resources 
MRI Technician and Technologist Career - Hospitals - Most Wanted - Abdominal Imaging - MRI Centers - Calculation
 
previous      11 - 15 (of 28)     next
Result Pages : [1]  [2 3 4]  [5 6]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 3 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]